

Jupyter Tutorial

Jupyter notebooks [https://jupyter-notebook.readthedocs.io/en/stable/] are
growing in popularity with data scientists and have become the de facto standard
for rapid prototyping and exploratory analysis. They inspire experiments and
innovations enormously and as well they make the entire research process faster
and more reliable. In addition, many additional components are created that
expand the original limits of their use and enable new uses.

digraph decide_jupyter {
 graph [fontname = "Calibri", fontsize="10", penwidth="1px",
 overlap=false];
 node [fontname = "Calibri", fontsize="10", style="bold",
 penwidth="1px", fontcolor="#640FFB"; color="#640FFB";];
 edge [fontname = "Calibri", fontsize="10", style="bold",
 penwidth="1px", fontcolor="#640FFB"; color="#640FFB";];
 tooltip="How do I decide which Jupyter packages I need?";
 // Top Level
 what [
 shape=diamond,
 label="What do you want to do?",
 tooltip="Jupyter offers you different ways how you can use the notebooks"]
 // Second Level
 singleuser [
 shape=plaintext,
 label=" ",
 tooltip="Single user"]
 team [
 shape=plaintext,
 label=" ",
 tooltip="Team"]
 nbconvert [
 label="nbconvert",
 tooltip="Install and\nuse nbconvert",
 target="_top",
 href="nbconvert.html"]
 nbviewer [
 label="nbviewer",
 tooltip="Install and\nuse nbviewer",
 target="_top",
 href="nbviewer.html"]
 kernels [
 label="Kernels",
 tooltip="Install, view and\nstart kernels",
 target="_top",
 href="kernels/install.html"]
 extensions [
 shape=plaintext,
 label=" ",
 tooltip="Install notebook extensions"]
 embed [
 shape=plaintext,
 label="",
 tooltip="Embed notebooks in other applications"]
 examples [
 label="Enterprise\napplications",
 tooltip="Application examples at\nNetflix, Bloomberg etc.",
 target="_top",
 href="use-cases.html"]
 // 3rd Level
 notebook [
 label="Jupyter-\nNotebook",
 tooltip="Install notebook locally",
 target="_top",
 href="notebook/index.html"]
 jupyterlab [
 label="JupyterLab",
 tooltip="Install JupyterLab locally",
 target="_top",
 href="jupyterlab/index.html"]
 hub [
 label="JupyterHub",
 tooltip="Install\nJupyterHub",
 target="_top",
 href="hub/index.html"]
 binder [
 label="Binder",
 tooltip="Binder tools",
 target="_top",
 href="binder.html"]
 nbviewer [
 label="nbviewer",
 tooltip="Install and use nbviewer",
 target="_top",
 href="nbviewer.html"]
 widgets [
 label="Widgets",
 tooltip="Install and\nuse ipywidgets",
 target="_top",
 href="ipywidgets/index.html"]
 extend [
 label="nbextensions",
 tooltip="Install and use various\nnotebook extensions",
 target="_top",
 href="nbextensions/index.html"]
 viz [
 label="Visualise\ndata",
 tooltip="Data visualisation libraries",
 target="_top",
 href="viz/index.html"]
 dash [
 label="Dashboards",
 tooltip="Install and\nuse Dashboards",
 target="_top",
 href="dashboards/index.html"]
 html [
 label="in HTML",
 tooltip="Embed notebooks in\nstatic HTML",
 target="_top",
 href="ipywidgets/embedding.html"]
 nbsphinx [
 label="nbsphinx",
 tooltip="Embed notebooks in the\nSphinx Document Generator",
 target="_top",
 href="sphinx/nbsphinx.html"]
 executablebooks [
 label="Executable Books",
 tooltip="Bücher aus Jupyter Notebooks und MyST",
 target="_top",
 href="sphinx/executablebooks.html"]
 // Edges
 what -> singleuser [label="Single\nuser"]
 what -> team [label="Teamwork"]
 what -> nbconvert [label="Convert"]
 nbconvert -> nbviewer [label="Conversion\nservice"]
 what -> kernels [label="Java, R,\nJulia etc."]
 what -> extensions [label="Extend\nnotebooks"]
 what -> embed [label="Embed\nnotebooks"]
 what -> examples [label="Examples"]
 singleuser -> {notebook jupyterlab}
 team -> {hub binder}
 extensions -> {widgets extend viz dash}
 embed -> {html nbsphinx executablebooks}
 // Arrangement
 rankdir="LR"
 {rank = same; what;}
 {rank = same; notebook; jupyterlab; hub; binder; widgets; extend; viz;
 dash; html}
 {rank = same; widgets; extend; viz; dash;}
}

Introduction

Target group

The users of Jupyter notebooks are diverse, from data scientists to data
engineers and analysts to system engineers. Their skills and workflows are very
different. However, one of the great strengths of Jupyter notebooks is that they
allow these different experts to work closely together in cross-functional
teams.

	Data scientists
	explore data with different parameters and summarise the results.

	Data engineers
	check the quality of the code and make it more robust, efficient and
scalable.

	Data analysts
	use the code provided by data engineers to systematically analyse the data.

	System engineers
	provide the research platform based on the JupyterHub on which the
other roles can perform their work.

In this tutorial we address system engineers who want to build and run a
platform based on Jupyter notebooks. We then explain how this platform can be
used effectively by data scientists, data engineers and analysts.

Why Jupyter?

How can these diverse tasks be simplified? You will hardly find a tool that
covers all of these tasks, and several tools are often required even for
individual tasks. Therefore, on a more abstract level, we are looking for more
general patterns for tools and languages with which data can be analysed and
visualised and a project can be documented and presented. This is exactly what
we are aiming for with Project Jupyter [https://jupyter.org/].

The Jupyter project started in 2014 with the aim of creating a consistent set of
open source tools for scientific research, reproducible workflows,
computational narratives [https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58]
and data analysis. In 2017, Jupyter received the ACM Software Systems Award [https://blog.jupyter.org/jupyter-receives-the-acm-software-system-award-d433b0dfe3a2]
– a prestigious award which, among other things, shares with Unix and the web.

To understand why Jupyter notebooks are so successful, let’s take a closer look
at the core functions:

	Jupyter Notebook Format [https://nbformat.readthedocs.io/en/latest/]
	Jupyter Notebooks are an open, JSON-based document format with full records
of the user’s sessions and the code they contain.

	Interactive Computing Protocol
	The notebook communicates with the computing kernel via the Interactive
Computing Protocol, an open network protocol based on JSON data via ZMQ [https://zeromq.org/] and WebSockets [https://en.wikipedia.org/wiki/WebSocket].

	Kernels
	Kernels are processes that execute interactive code in a specific
programming language and return the output to the user.

See also

	Jupyter celebrates 20 years [https://data.berkeley.edu/news/project-jupyter-celebrates-20-years-fernando-perez-reflects-how-it-started-open-sciences]

Jupyter infrastructure

A platform for the above-mentioned use cases requires an extensive
infrastructure that not only allows the provision of the kernel and the
parameterisation, time control and parallelisation of notebooks, but also the
uniform provision of resources.

This tutorial provides a platform that enables fast, flexible and comprehensive
data analysis beyond Jupyter notebooks. At the moment, however, we are not yet
going into how it can be expanded to include streaming pipelines and
domain-driven data stores.

However, you can also create and run the examples in the Jupyter tutorial
locally.

Workspace

Setting up the workspace includes installing and configuring
IPython [https://www.python4data.science/en/latest/workspace/ipython/index.html] and Jupyter notebooks, nbextensions and ipywidgets.

What’s new?

24.1.0

	🌱 Add matplotlib for social cards

	🔧 Use git tag for versioning the docs

	📝 Switch voila example to bqplot vueitfy

	📝 Switch to panel sampledata

	🔧 Add sphinx-lint

	📝 Add more alert boxes

	🔥 Remove node env

	🔥 Remove nbviewer env

	📝 Remove qgrid as it is not being developed further

	📝 Update MacTex install

	🔧 Add JupyterHub env

	🔧 Add Python 3.11 kernel config

1.1.0

	🔖 Jupyter-Tutorial 1.1.0

	✏️ Fix PDF structure

	📝 Add ‘What’s new’ section

	📝 Add Executable Books

	💄 Beautify the Jupyter overview

	📝 Add JupyterLab documentation

1.0.0

	🔧 Moving the Data Science content into Python4DataScience

	/first-steps/index.html -> /notebook/index.html

	/first-steps/create-notebook.html -> /notebook/create-notebook.html

	/first-steps/install.html -> /notebook/install.html

	/workspace/jupyter/$rest -> /

	/workspace/first-steps/$rest -> /notebook/

	/workspace/ipython/$rest -> Python4DataScience:/workspace/ipython/

	/workspace/numpy/$rest -> Python4DataScience:/workspace/numpy/

	/workspace/pandas/$rest -> Python4DataScience:/workspace/pandas/

	/data-processing/$rest -> Python4DataScience:/data-processing/

	/clean-prep/$rest -> Python4DataScience:/clean-prep/

	/parameterise/$rest -> /notebook/parameterise/

	/performance/ipyparallel//$rest -> /hub/ipyparallel/

	/performance/ -> Python4DataScience:/performance/

	/productive/ -> Python4DataScience:/productive/

	/testing/$rest -> /notebook/testing/

	/web/dashboards/$rest -> /dashboards/

Notebook

Jupyter Notebooks extend the console-based approach to interactive computing
with a web-based application, with which the entire process can be recorded:
from developing and executing the code to documenting and presenting the
results.

Install Jupyter Notebook

Create a virtual environment with jupyter

Python virtual environments [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Virtual-environment] allow Python packages
to be installed in an isolated location for a specific application, rather than
installing them globally. So you have your own installation directories and do
not share libraries with other virtual environments:

$ python3 -m venv myproject
$ cd myproject
$. bin/activate
$ python -m pip install jupyter

Start jupyter notebook

$ jupyter notebook
...
[I 12:46:53.852 NotebookApp] The Jupyter Notebook is running at:
[I 12:46:53.852 NotebookApp] http://localhost:8888/?token=53abd45a3002329de77f66886e4ca02539d664c2f5e6072e
[I 12:46:53.852 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 12:46:53.858 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///Users/veit/Library/Jupyter/runtime/nbserver-7372-open.html
 Or copy and paste one of these URLs:
 http://localhost:8888/?token=53abd45a3002329de77f66886e4ca02539d664c2f5e6072e

Your standard web browser will then open with this URL.

When the notebook opens in your browser, the notebook dashboard is displayed
with a list of the notebooks, files and subdirectories in the directory in which
the notebook server was started. In most cases you want to start a notebook
server in your project directory.

[image: ../_images/initial-jupyter-dashboard.png]

Create notebook

After the notebook server has started, we can create our first notebook.

Create a notebook

In your standard browser you should see the notebook dashboard with the New
menu on the right. All notebook kernels are listed in this menu, but initially
probably only Python 3.

After you have selected New ‣ Python 3, a new notebook
Untitled.ipynb will be created and displayed in a new tab:

[image: ../_images/initial-notebook.png]

Renaming the notebook

Next you should rename this notebook by clicking on the title Untitled:

[image: ../_images/rename-notebook.png]

The notebook user interface

There are two important terms used to describe Jupyter Notebooks: cell and
kernel:

	Notebook kernel
	Computational engine that executes the code contained in a notebook.

	Notebook cell
	Container for text to be displayed in a notebook or for code to be
executed by the notebook’s kernel.

	Code
	contains code to be executed in the kernel, and the output which is
shown below.

In front of the code cells are brackets that indicate the order in
which the code was executed.

	In []:
	indicates that the code has not yet been executed.

	In [*]:
	indicates that the execution has not yet been completed.

Warning

The output of cells can be used in other cells later. Therefore,
the result depends on the order. If you choose a different order
than the one from top to bottom, you may get different results
later when you e.g. select Cell ‣ Run All.

	Markdown
	contains text formatted with Markdown [https://daringfireball.net/projects/markdown/syntax], which is
interpreted as soon as Run is pressed.

What’s an ipynb file?

This file describes a notebook in
JSON [https://www.python4data.science/en/latest/data-processing/serialisation-formats/json/index.html]
format. Each cell and its contents including pictures are listed there along
with some metadata. You can have a look at them if you select the notebook in
the dashboard and then click on edit. For example the JSON file
for my-first-notebook.ipynb looks like this:

{
 "cells": [
 {
 "cell_type": "markdown",
 "metadata": {},
 "source": [
 "# My first notebook"
]
 },
 {
 "cell_type": "code",
 "execution_count": 1,
 "metadata": {},
 "outputs": [
 {
 "name": "stdout",
 "output_type": "stream",
 "text": [
 "Hello World!\n"
]
 }
],
 "source": [
 "print('Hello World!')"
]
 }
],
 "metadata": {
 "kernelspec": {
 "display_name": "Python 3",
 "language": "python",
 "name": "python3"
 },
 "language_info": {
 "codemirror_mode": {
 "name": "ipython",
 "version": 3
 },
 "file_extension": ".py",
 "mimetype": "text/x-python",
 "name": "python",
 "nbconvert_exporter": "python",
 "pygments_lexer": "ipython3",
 "version": "3.7.0"
 }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

Save and checkpoints

When you click on Save and Checkpoint, your *.ipynb
file will be saved. But what is the checkpoint all about?

Every time you create a new notebook, a file is also created, which usually
automatically saves your changes every 120 seconds. This checkpoint is usually
located in a hidden directory called .ipynb_checkpoints/. This
checkpoint file therefore enables you to restore your unsaved data in the event
of an unexpected problem. You can go back to one of the last checkpoints in
File ‣ Revert to Checkpoint.

Tips and tricks

	Give the notebook a title (# MY TITLE) and a meaningful foreword to
describe the content and purpose of the notebook.

	Create headings and documentation in Markdown cells to structure your
notebook and explain your workflow steps. It doesn’t matter whether you do
this for your colleagues or for yourself in the future.

	Use Table of Contents (2) from the List of extensions to
create a table of contents.

	Use the notebook extension setup.

	Use snippets from the list of extensions to add more frequently used code
blocks, for example typical import instructions, easy to insert.

Keyboard shortcuts

If you know the Jupyter keyboard shortcuts, you can work much more efficiently
with notebooks. Jupyter notebooks have two different keyboard input modes:

	In edit mode you can enter code or text in a cell. This is indicated by a
green cell border.

	Command mode binds the keyboard to notebook-level commands and is
indicated by a gray cell border with a blue left border.

	Command mode

	This mode is available with ␛.

	f

	find and replace

	↩

	enter edit mode

	⌘-⇧-f,
⌘-⇧-p,
p

	open the command palette

	⇧-↩

	run cell, select below

	⌃-↩,
⌘-↩

	run selected cells

	⌥-↩

	run cell and insert below

	y

	change cell to code

	m

	change cell to markdown

	r

	change cell to raw

	1,
2 etc.

	change cell to heading 1, heading 2,
etc.

	k,
↑

	select cell above

	j,
↓

	select cell below

	⇧-k,
⇧-↑

	extend selected cells above

	⇧-j,
⇧-↓

	extend selected cells below

	⌘-a

	select all cells

	a

	insert cell above

	b

	insert cell below

	x

	cut selected cells

	c

	copy selected cells

	⇧-v

	paste cells above

	v

	paste cells below

	z

	undo cell deletion

	d d

	delete selected cells

	⇧-m

	merge selected cells, or current cell
with cell below if only one cell is
selected

	⌘-s,
s

	save and checkpoint

	l

	toggle line numbers

	o

	toggle output of selected cells

	⇧-o

	toggle output scrolling of selected
cells

	h

	show keyboard shortcuts

	i i

	interrupt the kernel

	0 0

	restart the kernel (with dialog)

	⌘-v

	dialog for paste from system clipboard

	␛,
q

	close the pager

	Edit mode

	This mode becomes available with ↩.

	⇥

	code completion or indent

	⇧-⇥

	tooltip

	⌘-]

	indent

	⌘-[

	dedent

	⌘-a

	select all

	⌘-z

	undo

	⌘-/

	comment

	⌘-d

	delete whole line

	⌘-u

	undo selection

	⎀

	toggle overwrite flag

	⌘-↑

	go to cell start

	⌘-↓

	go to cell end

	⌥-←

	go one word left

	⌥-→

	go one word right

	⌥-⌫

	delete word before

	⌥-⌦

	delete word after

	⌘-⇧-z

	redo

	⌘-⇧-u

	redo selection

	⌃-k

	emacs-style line kill

	⌘-⌫

	delete line left of cursor

	⌘-⌦

	delete line right of cursor

	⌃-m,
␛

	enter command mode

	⌘-⇧-f,
⌘-⇧-p

	open the command palette

	⇧-↩

	run cell, select below

	⌃-↩

	run selected cells

	⌘-↩

	run selected cells

	⌥-↩

	run cell and insert below

	⌃-⇧--

	split cell at cursor(s)

	⌘-s

	save and checkpoint

	↓

	move cursor down

	↑

	move cursor up

Own keyboard shortcuts

You can also define your own keyboard shortcuts in Help ‣ Edit
Keyboard Shortcuts.

See also

	Keyboard Shortcut Customization [https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Custom%20Keyboard%20Shortcuts.html]

Jupyter paths and configuration

Configuration files are usually stored in the ~/.jupyter directory.
However, another directory can be specified with the environment variable
JUPYTER_CONFIG_DIR. If Jupyter cannot find a configuration in
JUPYTER_CONFIG_DIR, Jupyter runs through the search path with
/SYS.PREFIX/etc/jupyter/ and then for Unix
/usr/local/etc/jupyter/ and /etc/jupyter/, for Windows
%PROGRAMDATA%\jupyter\.

You can have the currently used configuration directories listed with:

$ jupyter --paths
config:
 /Users/veit/.jupyter
 /Users/veit/.local/share/virtualenvs/jupyter-tutorial--q5BvmfG/bin/../etc/jupyter
 /usr/local/etc/jupyter
 /etc/jupyter
...

Create the configuration files

You can create a standard configuration with:

$ jupyter notebook --generate-config
Writing default config to: /Users/veit/.jupyter/jupyter_notebook_config.py

More generally, configuration files can be created for all Jupyter applications
with jupyter APPLICATION --generate-config.

Change the configuration

… by editing the configuration file

e.g. in jupyter_notebook_config.py:

c.NotebookApp.port = 8754

If the values are saved as list, dict or set, they can also be
supplemented with append, extend, prepend, add and
update, e.g.:

c.TemplateExporter.template_path.append('./templates')

… with the command line

for example:

$ jupyter notebook --NotebookApp.port=8754

There are aliases for frequently used options such as for --port or
--no-browser.

The command line options override options set in a configuration file.

See also

traitlets.config [https://traitlets.readthedocs.io/en/latest/config.html#module-traitlets.config]

Parameterisation and scheduling

With JupyterLab you can use the Jupyter Scheduler for parameterisation and time-controlled
execution. For Jupyter Notebooks, papermill [https://papermill.readthedocs.io/en/latest/] is available.

Install

$ pipenv install papermill
Installing papermill…
Adding papermill to Pipfile's [packages]…
✔ Installation Succeeded
…

Use

	Parameterise

The first step is to parameterise the notebook. For this purpose the cells are
tagged as parameters in View ‣ Cell Toolbar ‣ Tags.

	Inspect

You can inspect a notebook for example with:

$ pipenv run papermill --help-notebook docs/notebook/parameterise/input.ipynb
Usage: papermill [OPTIONS] NOTEBOOK_PATH [OUTPUT_PATH]

Parameters inferred for notebook 'docs/notebook/parameterise/input.ipynb':
 msg: Unknown type (default None)

	Execute

There are two ways to run a notebook with parameters:

	… via the Python API

The execute_notebook function can be called to execute a notebook with
a dict of parameters:

execute_notebook(INPUT_NOTEBOOK, OUTPUT_NOTEBOOK, DICTIONARY_OF_PARAMETERS)

for example for input.ipynb:

In [1]: import papermill as pm

In [2]: pm.execute_notebook(
 "PATH/TO/INPUT_NOTEBOOK.ipynb",
 "PATH/TO/OUTPUT_NOTEBOOK.ipynb",
 parameters=dict(salutation="Hello", name="pythonistas"),
)

The result is output.ipynb:

In [1]: salutation = None
 name = None

In [2]: # Parameters
 salutation = "Hello"
 name = "pythonistas"

In [3]: from datetime import date

 today = date.today()
 print(
 salutation,
 name,
 "– welcome to our event on this " + today.strftime("%A, %d %B %Y"),
)

Out[3]: Hello pythonistas – welcome to our event on this Monday, 26 June 2023

See also

	Workflow reference [https://papermill.readthedocs.io/en/latest/reference/papermill-workflow.html]

	… via CLI

$ pipenv run papermill input.ipynb output.ipynb -p salutation 'Hello' -p name 'pythonistas'

Alternatively, a YAML file can be specified with the parameters, for
example params.yaml:

params.yaml

salutation: "Hello"
name: "Pythonistas"

$ pipenv run papermill input.ipynb output.ipynb -f params.yaml

With -b, a base64-encoded YAML string can be provided, containing the
parameter values:

$ pipenv run papermill input.ipynb output.ipynb -b c2FsdXRhdGlvbjogIkhlbGxvIgpuYW1lOiAiUHl0aG9uaXN0YXMi

See also

	CLI reference [https://papermill.readthedocs.io/en/latest/usage-cli.html]

You can also add a timestamp to the file name:

$ dt=$(date '+%Y-%m-%d_%H:%M:%S')
$ pipenv run papermill input.ipynb output_$(date '+%Y-%m-%d_%H:%M:%S').ipynb -f params.yaml

This creates an output file whose file name contains a timestamp, for
example output_2023-06-26_15:57:33.ipynb.

Finally, you can use crontab -e to execute the two commands
automatically at certain times, for example on the first day of every
month:

dt=$(date '+%Y-%m-%d_%H:%M:%S')
0 0 1 * * cd ~/jupyter-notebook && pipenv run papermill input.ipynb output_$(date '+%Y-%m-%d_%H:%M:%S').ipynb -f params.yaml

	Store

Papermill can store notebooks in a number of locations including S3, Azure
data blobs, and Azure data lakes. Papermill allows new data stores to be
added over time.

See also

	papermill Storage [https://papermill.readthedocs.io/en/latest/reference/papermill-storage.html]

	Extending papermill through entry points [https://papermill.readthedocs.io/en/latest/extending-entry-points.html]

Testing

Concepts

	Test Case
	tests a single scenario.

See also

	pytest fixtures [https://docs.pytest.org/en/stable/explanation/fixtures.html]

	Test Fixture
	is a consistent test environment.

	Test Suite
	is a collection of several test cases.

	Test Runner
	runs through a test suite and presents the results.

Notebooks

	Unit tests

	Doctests

	Mock

Tools

	ipytest

	Hypothesis

Unit tests

[1]:

def add(a, b):
 return a + b

[2]:

import unittest

class TestNotebook(unittest.TestCase):
 def test_add(self):
 self.assertEqual(add(2, 2), 5)

unittest.main(argv=[""], verbosity=2, exit=False)

test_add (__main__.TestNotebook.test_add) ... FAIL

==
FAIL: test_add (__main__.TestNotebook.test_add)
--
Traceback (most recent call last):
 File "/tmp/ipykernel_8759/2216555184.py", line 6, in test_add
 self.assertEqual(add(2, 2), 5)
AssertionError: 4 != 5

--
Ran 1 test in 0.001s

FAILED (failures=1)

[2]:

<unittest.main.TestProgram at 0x1065794d0>

Alternatively, ipython-unittest [https://github.com/JoaoFelipe/ipython-unittest] can also be used. This enables the following Cell Magics to be used in iPython:

	%%unittest_main executes test cases that are defined in a cell

	%%unittest_testcase creates a test case with the function defined in a cell and executes it

	%%unittest converts Python assert to unit test functions

	%%external to perform external unit tests

	%%write {mode} to write external files

[3]:

%reload_ext ipython_unittest

[4]:

%%unittest_main
class MyTest(unittest.TestCase):
 def test_1_plus_1_equals_2(self):
 sum = 1 + 1
 self.assertEqual(sum, 2)

 def test_2_plus_2_equals_4(self):
 self.assertEqual(2 + 2, 4)

Success

..
--
Ran 2 tests in 0.000s

OK

[4]:

<unittest.runner.TextTestResult run=2 errors=0 failures=0>

[5]:

%%unittest_testcase
def test_1_plus_1_equals_2(self):
 sum = 1 + 1
 self.assertEqual(sum, 2)

def test_2_plus_2_equals_4(self):
 self.assertEqual(2 + 2, 4)

Success

..
--
Ran 2 tests in 0.000s

OK

[5]:

<unittest.runner.TextTestResult run=2 errors=0 failures=0>

[6]:

%%unittest
"1 plus 1 equals 2"
sum = 1 + 1
assert sum == 2
"2 plus 2 equals 4"
assert 2 + 2 == 4

Success

..
--
Ran 2 tests in 0.000s

OK

[6]:

<unittest.runner.TextTestResult run=2 errors=0 failures=0>

By default, Docstring separates the unit test methods in this magic. However, if docstrings are not used, the Cell Magics create one for each assert method.

These Cell Magics support optional arguments:

	-p (--previous) P

puts the cursor in front of P cells (default -1 corresponds to the next cell)

However, this only works if jupyter_dojo [https://github.com/JoaoFelipe/jupyter-dojo] is also installed.

	-s (--stream) S

sets the ooutput stream (default is: sys.stdout)

	-t (--testcase) T

defines the name of the TestCase for %%unittest and %%unittest_testcase

	-u (--unparse)

outputs the source code after the transformations

Doctests

[1]:

import doctest

def add(a, b):
 """
 This is a test:
 >>> add(7,6)
 13
 """
 return a + b

doctest.testmod(verbose=True)

Trying:
 add(7,6)
Expecting:
 13
ok
1 items had no tests:
 __main__
1 items passed all tests:
 1 tests in __main__.add
1 tests in 2 items.
1 passed and 0 failed.
Test passed.

[1]:

TestResults(failed=0, attempted=1)

Debugging

[2]:

doctest.testmod()

def multiply(a, b):
 """
 This is a test:
 >>> multiply(2, 2)
 5
 """
 import pdb

 pdb.set_trace()
 return a * b

	import pdb imports the Python debugger

	pdb.set_trace() creates a breakpoint that starts the Python debugger.

See also:

	pdb – The Python Debugger [https://docs.python.org/3/library/pdb.html]

Mock

Mock objects [https://en.wikipedia.org/wiki/Mock_object] promote tests based on the behaviour of objects. The Python library mock [https://docs.python.org/3/library/unittest.mock.html] allows you to replace parts of the system under test with mock objects and make statements about their use.

Installation

mock [https://docs.python.org/3/library/unittest.mock.html] is included in the Python standard library since Python 3.3. For older versions of Python you can install it with:

$ bin/python -m pip install mock

Example

In our example, we want to check whether the working days from Monday to Friday are determined correctly.

	First we import datetime and Mock:

[1]:

from datetime import datetime
from unittest.mock import Mock

	Then we define two test days:

[2]:

monday = datetime(year=2021, month=10, day=11)
saturday = datetime(year=2021, month=10, day=16)

	Now we define a method to check the working days, where Python’s datetime library treats Mondays as 0 and Sundays as 6:

[3]:

def is_workingday():
 today = datetime.today()
 return (0 <= today.weekday() < 5)

	Then we mock datetime:

[4]:

datetime = Mock()

	Finally, we test our two mock objects:

[5]:

datetime.today.return_value = monday
assert is_workingday()

[6]:

datetime.today.return_value = saturday
assert not is_workingday()

[7]:

datetime.today.return_value = monday
assert not is_workingday()

AssertionError Traceback (most recent call last)
Cell In[7], line 2
 1 datetime.today.return_value = monday
----> 2 assert not is_workingday()

AssertionError:

See also:

	Introducing time-machine, a New Python Library for Mocking the Current Time [https://adamj.eu/tech/2020/06/03/introducing-time-machine/]

mock.ANY

With mock.ANY [https://docs.python.org/3/library/unittest.mock.html#any] you can check whether a value is present at all without having to check an exact value:

[8]:

from unittest.mock import ANY

mock = Mock(return_value=None)
mock("foo", bar=object())
mock.assert_called_once_with("foo", bar=ANY)

See also:

In test_report.py [https://github.com/openstack/zun/blob/917868f5fe02ff419fd35c5d9332f45a064ed385/zun/tests/unit/scheduler/client/test_report.py] of the OpenStack container service Zun you will find more practical examples for ANY.

patch decorator

To create mock classes or objects, the patch decorator can be used. In the following examples, the output of os.listdir is mocked. For this, the file example.txt does not have to be present in the directory:

[9]:

import os
from unittest import mock

[10]:

@mock.patch("os.listdir", mock.MagicMock(return_value="example.txt"))
def test_listdir():
 assert "example.txt" == os.listdir()

test_listdir()

Alternatively, the return value can also be defined separately:

[11]:

@mock.patch("os.listdir")
def test_listdir(mock_listdir):
 mock_listdir.return_value = "example.txt"
 assert "example.txt" == os.listdir()

test_listdir()

See also:

You can use responses [https://github.com/getsentry/responses] to create mock objects for the Requests [https://www.python4data.science/de/latest/data-processing/requests/index.html] library.

ipytest

Setup

[1]:

Set the file name (required)
__file__ = "testing.ipynb"

Add ipython magics
Add ipython magics
import ipytest
import pytest

ipytest.autoconfig()

Test Case

[2]:

%%ipytest

def test_sorted():
 assert sorted([4, 2, 1, 3]) == [1, 2, 3, 4]

. [100%]
1 passed in 0.00s

Test Fixture

[3]:

%%ipytest

@pytest.fixture
def dict_list():
 return [
 dict(a='a', b=3),
 dict(a='c', b=1),
 dict(a='b', b=2),
]

def test_sorted__key_example_1(dict_list):
 assert sorted(dict_list, key=lambda d: d['a']) == [
 dict(a='a', b=3),
 dict(a='b', b=2),
 dict(a='c', b=1),
]

def test_sorted__key_example_2(dict_list):
 assert sorted(dict_list, key=lambda d: d['b']) == [
 dict(a='c', b=1),
 dict(a='b', b=2),
 dict(a='a', b=3),
]

.. [100%]
2 passed in 0.00s

Test parameterisation

[4]:

%%ipytest

@pytest.mark.parametrize('input,expected', [
 ([2, 1], [1, 2]),
 ('zasdqw', list('adqswz')),
])
def test_examples(input, expected):
 actual = sorted(input)
 assert actual == expected

.. [100%]
2 passed in 0.00s

Reference

%%run_pytest …

IPython magic that executes first the cell and then run_pytest. Arguments passed in the cell are passed directly to pytest. The Magics should have been imported with import ipytest.magics beforehand.

ipytest.run_pytest(module=None, filename=None, pytest_options=(), pytest_plugins=())

runs the tests in the existing module (by default main) with pytest.

Arguments:

	module: the module that contains the tests. If not specified, __main__ is used.

	filename: Filename of the file containing the tests. If nothing is specified, the __file__attribute of the passed module is used.

	pytest_options: additional options passed to pytest.

	pytest_plugins: additional pytest plugins.

ipytest.run_tests(doctest=False, items=None)

Arguments:

	doctest: If True is specified, angegeben wird, then doctests are searched for.

	items: The globals object that contains the tests. If None is specified, the globals object is obtained from the call stack.

ipytest.clean_tests(pattern="test*", items=None)

deletes those tests whose names match the specified pattern.

In IPython, the results of all evaluations are saved in global variables, unless they are explicitly deleted. This behavior implies that if tests are renamed, the previous definitions will still be found if they are not deleted. This method aims to simplify this process.

An effective method is clean_tests to start with a cell, then define all test cases and finally run_tests call them. That way, renaming tests works as expected.

Arguments:

	pattern: A glob pattern that is used to find the tests to delete.

	items: The globals object that contains the tests. If None is specified, the globals object is obtained from the call stack.

ipytest.collect_tests(doctest=False, items=None)

collects all test cases and sends them to unittest.TestSuite.

The arguments are the same as for ipytest.run_tests.

ipytest.assert_equals(a, b, *args, **kwargs)

compares two objects and throws an exception if they are not the same.

The method ipytest.get_assert_function determines the assert implementation to be used depending on the following arguments:

	a, b: the two objects to be compared.

	args, kwargs: (Keyword) arguments that are passed to the underlying test function.

ipytest.get_assert_function(a, b)

determines the assert function to be used depending on the arguments.

If one of the objects is numpy.ndarray, pandas.Series, pandas.DataFrame or pandas.Panel the assert functions provided by numpy and pandas will be returned.

ipytest.unittest_assert_equals(a, b)

compares two objects using the assertEqual method of unittest.TestCase.

Hypothesis

Hypothesis [https://hypothesis.readthedocs.io/en/latest/] is a library that allows you to write tests that are parameterised from a source of examples. Then simple and comprehensible examples are generated, which can be used to fail your tests and to find errors with little effort.

Example

To test lists with floating point numbers, many examples are tried, but only a simple example is given in the report for each bug (unique exception type and position):

[1]:

from hypothesis import given
from hypothesis.strategies import lists, floats

[2]:

Add ipython magics
import ipytest
import pytest

ipytest.autoconfig()

[3]:

%%ipytest

@given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
def test_mean(ls):
 mean = sum(ls) / len(ls)
 assert min(ls) <= mean <= max(ls)

F [100%]
=== FAILURES ===
__ test_mean ___

 @given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
> def test_mean(ls):

/tmp/ipykernel_8817/1742712940.py:2:
_ _

ls = [9.9792015476736e+291, 1.7976931348623157e+308]

 @given(lists(floats(allow_nan=False, allow_infinity=False), min_size=1))
 def test_mean(ls):
 mean = sum(ls) / len(ls)
> assert min(ls) <= mean <= max(ls)
E assert inf <= 1.7976931348623157e+308
E + where 1.7976931348623157e+308 = max([9.9792015476736e+291, 1.7976931348623157e+308])
E Falsifying example: test_mean(
E ls=[9.9792015476736e+291, 1.7976931348623157e+308],
E)

/tmp/ipykernel_8817/1742712940.py:4: AssertionError
=== warnings summary ===
../../../../../../.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/_pytest/config/__init__.py:1204
 /Users/veit/.local/share/virtualenvs/python-311-6zxVKbDJ/lib/python3.11/site-packages/_pytest/config/__init__.py:1204: PytestAssertRewriteWarning: Module already imported so cannot be rewritten: hypothesis
 self._mark_plugins_for_rewrite(hook)

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
===================================== short test summary info ======================================
FAILED t_97777e739d3141398e41c86d782e924f.py::test_mean - assert inf <= 1.7976931348623157e+308
1 failed, 1 warning in 0.63s

Installation

$ pipenv install hypothesis

Alternatively, Hypothesis can also be installed with extras [https://hypothesis.readthedocs.io/en/latest/extras.html], for example

$ pipenv install hypothesis"[numpy, pandas]"

Note:

If you haven’t installed pipenv yet, you can find instructions on how to do this in Install pipenv [https://www.python4data.science/en/latest/productive/envs/pipenv/install.html].

See also:

	Hypothesis for the Scientific Stack [https://hypothesis.readthedocs.io/en/latest/numpy.html]

JupyterLab

JupyterLab [https://jupyterlab.readthedocs.io/en/latest/index.html] is an
extensible, feature-rich editor for creating and editing Jupyter Notebooks:

	You can arrange multiple documents and activities side by side in your
workspace using tabs.

	Code consoles provide temporary scratchpads for running code interactively,
which can also be linked to a notebook kernel.

	There is also preview of
CSV [https://www.python4data.science/en/latest/data-processing/serialisation-formats/csv/index.html] and
Vega [https://pyviz-tutorial.readthedocs.io/de/latest/vega/index.html] files.

	JupyterLab extensions can customise or enhance any part of JupyterLab.

JupyterLab currently uses the same Notebook document format as the classic
Jupyter Notebook. Notebook 7 will replace the classic
Jupyter Notebook format.

See also

Migrating to Notebook 7 [https://jupyter-notebook.readthedocs.io/en/latest/migrate_to_notebook7.html]

Install JupyterLab

Creating a virtual environment with JupyterLab

$ python3 -m venv myproject
$ cd myproject
$. bin/activate
$ python -m pip install jupyterlab

Start JupyterLab

$ jupyter lab
[I 2023-06-16 13:01:43.205 ServerApp] Package jupyterlab took 0.0000s to import
...
 To access the server, open this file in a browser:
 file:///Users/veit/Library/Jupyter/runtime/jpserver-48904-open.html
 Or copy and paste one of these URLs:
 http://localhost:8888/lab?token=72d33027f130e602f43ef0cdfbff7471c8406ffafd94f075
 http://127.0.0.1:8888/lab?token=72d33027f130e602f43ef0cdfbff7471c8406ffafd94f075

Your default web browser will then open with this URL.

[image: ../_images/initial-jupyterlab-dashboard.png]

Localisation

Since version 3.0, JupyterLab offers the possibility to set the display language
of the interface. To do this, the appropriate language packages must be
installed, for example:

$ python -m pip install jupyterlab-language-pack-de-DE

In the language-packs [https://github.com/jupyterlab/language-packs/]
repository you will find a list of the available language packs.

Then you can select the newly installed language in Settings ‣
Language.

JupyterLab extensions

JupyterLab is designed as an extensible environment. In doing so, JupyterLab
extensions can customise any part of JupyterLab. They can provide new themes,
file viewers and editors, or renderers for rich outputs in
Notebook.

See also

JupyterLab Extensions by Examples [https://github.com/jupyterlab/extension-examples]

Installing extensions

A JupyterLab extension contains JavaScript that is installed in JupyterLab and
executed in the browser. Most JupyterLab extensions can be installed with
pip [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip]. These packages can also contain server-side components that are
required for the extension to function.

Since JupyterLab ≥ 4, the default extension manager uses PyPI [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-PyPI] as a
source for the available extensions and pip [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip] to install them. An
extension is listed if the Python package has the trove classifier [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-trove-classifiers] Framework :: Jupyter :: JupyterLab :: Extensions ::
Prebuilt.

Warning

It does not check if the extension is compatible with the current JupyterLab
version.

Danger

Installing an extension allows arbitrary code to be executed on the server,
kernel and browser. Therefore, avoid installing extensions that you do not
trust.

Configuring the Extension Manager

By default, there are two extension managers provided by JupyterLab:

	pypi
	Default setting that allows the installation from pypi.org [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pypi.org].

	readonly
	shows the installed extensions with the possibility to disable or enable
them.

You can specify the manager with the command line option
--LabApp.extension_manager, for example jupyter lab
--LabApp.extension_manager=readonly.

When searching for extensions in the extension manager, JupyterLab usually shows
all search results and any source extension can be installed. However, to
increase security, JupyterLab can be configured so that extensions can only be
activated using the block or allow lists.

You can define the loading of the lists with blocked_extensions_uris or
allowed_extensions_uris, which contain a list of comma-separated URIs, for
example
--LabServerApp.blocked_extensions_uris=http://example.com/blocklist.json
with the following blocklist.json file:

{
 "blocked_extensions": [
 {
 "name": "@jupyterlab-examples/launcher",
 "type": "jupyterlab",
 "reason": "@jupyterlab-examples/launcher is blocklisted for test purpose - Do NOT take this for granted!!!",
 "creation_date": "2020-03-11T03:28:56.782Z",
 "last_update_date": "2020-03-11T03:28:56.782Z"
 }
]
}

Another example shows an allowlist.json file that allows all extensions
of the JupyterLab organisation [https://www.npmjs.com/org/jupyterlab]:

{
 "allowed_extensions": [
 {
 "name": "@jupyterlab/*",
 "type": "jupyterlab",
 "reason": "All @jupyterlab org extensions are allowed, of course…",
 "creation_date": "2020-03-11T03:28:56.782Z",
 "last_update_date": "2020-03-11T03:28:56.782Z"
 }
]
}

JupyterLab on JupyterHub

JupyterLab works by default with JupyterHub ≥ 1.0 and can even run
alongside classic notebooks.

When JupyterLab is used with JupyterHub, additional menu items are displayed in
the File menu to Log Out or to call up the
Hub Control Panel.

If JupyterLab is not yet the default, you can change the configuration in
jupyterhub_config.py:

c.Spawner.default_url = "/lab"

Real-time collaboration

From JupyterLab ≥ 4 it is possible to activate Real-Time Collaboration by
installing the extension jupyter_collaboration. This enables real-time
collaboration between multiple clients. In addition, you can see the cursors of
others.

See also

	jupyter_collaboration documentation [https://jupyterlab-realtime-collaboration.readthedocs.io/en/latest/]

Installation

$ python -m pip install jupyter-collaboration

To share a document with others, you can copy the URL and send it, or you can
additionally install jupyterlab-link-share [https://github.com/jupyterlab-contrib/jupyterlab-link-share], which allows
you to share the link including the token.

Scheduler

Jupyter Scheduler [https://jupyter-scheduler.readthedocs.io/en/latest/index.html] is a
collection of extensions for programming jobs to run immediately or on a
schedule. It has a Lab (client) and a Server extension. Both are needed to
schedule and run notebooks. If you install Jupyter Scheduler via the JupyterLab
extension manager, you may only install the client extension and not the server
extension. Therefore, install Jupyter Scheduler with pip [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip]:

$ python -m pip install jupyter_scheduler

This will automatically activate the lab and server extensions. You can check
this with

$ jupyter server extension list
...
 jupyter_scheduler enabled
 - Validating jupyter_scheduler...
Package jupyter_scheduler took 0.0785s to import
 jupyter_scheduler 1.3.2 OK
...

and

$ jupyter labextension list
...
 @jupyterlab/scheduler v1.3.2 enabled X
...

	To create a jog from an open notebook, click the Create a notebook
job button in the top toolbar of the open notebook.

	Give your notebook job a name, select the output formats and specify
parameters that will be set as local variables when your notebook is
executed. This parameterised execution is similar to that used in
Papermill.

	To create a job that will run once, select Run now and click
Create.

	To create a job definition that will run repeatedly on a schedule, select
Run on a schedule.

JupyterHub

JupyterHub [https://jupyterhub.readthedocs.io/en/stable/] is a multi-user
server for Jupyter Notebooks, which can create and manage many different
instances of Jupyter Notebooks and which acts as a proxy.

Installation

	Install Python≥3.6 and pip [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-pip]:

$ sudo apt update
$ sudo apt install python3
$ python3 -V
Python 3.10.6
$ sudo apt install python3-pip

	Create service user jupyter:

$ sudo useradd -s /bin/bash -rmd /srv/jupyter jupyter

	Switch to the service user jupyter:

$ sudo -u jupyter -i

	Install Pipenv [https://python-basics-tutorial.readthedocs.io/en/latest/libs/glossary.html#term-Pipenv]:

$ python3 -m pip install --user pipenv

This installs Pipenv in USER_BASE.

	Determine USER_BASE and enter it in PATH:

$ python3 -m site --user-base
/srv/jupyter/.local

Then the bin directory must be appended and added to PATH in
~/.profile, so:

export PATH=/srv/jupyter/.local/bin:$PATH

Finally, the changed profile is read in with:

$ source ~/.profile

	Create a virtual environment and install JupyterHub:

$ mkdir jupyterhub_env
$ cd jupyterhub_env
$ pipenv install jupyterhub

	Install nodejs and npm:

$ sudo apt install nodejs npm
$ node -v
v12.22.9
$ npm -v
8.5.1

	Install the HTTP proxy:

$ sudo npm install -g configurable-http-proxy

	If JupyterLab and Notebook are to run in the same environment, they must also
be installed here:

$ pipenv install jupyterlab notebook

	Testing the installation:

$ pipenv run jupyterhub -h
$ configurable-http-proxy -h

	Starting the JupyterHub:

$ pipenv run jupyterhub
...
[I 2019-07-31 22:47:26.617 JupyterHub app:1912] JupyterHub is now running at http://:8000

You can end the process again with ctrl-c.

Configuration

JupyterHub configuration

Create configuration file:

$ pipenv run jupyterhub --generate-config
Writing default config to: jupyterhub_config.py

See also

	JupyterHub Configuration Basics [https://jupyterhub.readthedocs.io/en/stable/tutorial/getting-started/config-basics.html]

	JupyterHub Networking basics [https://jupyterhub.readthedocs.io/en/stable/tutorial/getting-started/networking-basics.html]

System Service for JupyterHub

	Determine the Python virtual environment:

$ cd ~/jupyter-tutorial
$ pipenv --venv
/srv/jupyter/.local/share/virtualenvs/jupyter-tutorial-aFv4x91W

	Configure the absolute path to jupyterhub-singleuser in the
jupyterhub_config.py file:

c.Spawner.cmd = ['/srv/jupyter/.local/share/virtualenvs/jupyter-tutorial-aFv4x91/bin/jupyterhub-singleuser']

	Add a new systemd unit file /etc/systemd/system/jupyterhub.service
with the command:

$ sudo systemctl edit --force --full jupyterhub.service

Add your corresponding Python environment.

[Unit]
Description=Jupyterhub

[Service]
User=root
Environment="PATH=/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/srv/jupyter/.local/share/virtualenvs/jupyterhub-aFv4x91W/bin"
ExecStart=/srv/jupyter/.local/share/virtualenvs/jupyterhub-aFv4x91W/bin/jupyterhub -f /srv/jupyter/jupyterhub_env/jupyterhub_config.py

[Install]
WantedBy=multi-user.target

	Loading the configuration with:

$ sudo systemctl daemon-reload

	The JupyterHub can be managed with:

$ sudo systemctl <start|stop|status> jupyterhub

	To ensure that the service is also loaded during a system start, the
following is called:

$ sudo systemctl enable jupyterhub.service
Created symlink /etc/systemd/system/multi-user.target.wants/jupyterhub.service → /etc/systemd/system/jupyterhub.service.

	To be able to use the jupyterhub-singleuser and start your own server,
the ix users must be entered in the jupyter group, for example with
usermod -aG jupyter VEIT.

Since JupyterHub includes authentication and allows the execution of any code,
it should not be executed without SSL (HTTPS). To do this, an official,
trustworthy SSL certificate must be created. After you have received and
installed a key and a certificate, you don’t configure the JupyterHub itself,
but the upstream Apache web server.

	For this purpose, the additional modules are first activated with

a2enmod ssl rewrite proxy proxy_http proxy_wstunnel

	Then the VirtualHost can be configured in
/etc/apache2/sites-available/jupyter.cusy.io.conf

redirect HTTP to HTTPS
<VirtualHost 172.31.50.170:80>
 ServerName jupyter.cusy.io
 ServerAdmin webmaster@cusy.io

 ErrorLog ${APACHE_LOG_DIR}/jupyter.cusy.io_error.log
 CustomLog ${APACHE_LOG_DIR}/jupyter.cusy.io_access.log combined

 Redirect / https://jupyter.cusy.io/
</VirtualHost>

<VirtualHost 172.31.50.170:443>
 ServerName jupyter.cusy.io
 ServerAdmin webmaster@cusy.io

 # configure SSL
 SSLEngine On
 SSLCertificateFile /etc/ssl/certs/jupyter.cusy.io_cert.pem
 SSLCertificateKeyFile /etc/ssl/private/jupyter.cusy.io_sec_key.pem
 # for an up-to-date SSL configuration see e.g.
 # https://ssl-config.mozilla.org/

 # Use RewriteEngine to handle websocket connection upgrades
 RewriteEngine On
 RewriteCond %{HTTP:Connection} Upgrade [NC]
 RewriteCond %{HTTP:Upgrade} websocket [NC]
 RewriteRule /(.*) ws://127.0.0.1:8000/$1 [P,L]

 <Location "/">
 # preserve Host header to avoid cross-origin problems
 ProxyPreserveHost on
 # proxy to JupyterHub
 ProxyPass http://127.0.0.1:8000/
 ProxyPassReverse http://127.0.0.1:8000/
 </Location>

 ErrorLog ${APACHE_LOG_DIR}/jupyter.cusy.io_error.log
 CustomLog ${APACHE_LOG_DIR}/jupyter.cusy.io_access.log combined
</VirtualHost>

	This VirtualHost is activated with

a2ensite jupyter.cusy.io.conf

	Finally, the status of the Apache web server is checked with

systemctl status apache2
● apache2.service - The Apache HTTP Server
 Loaded: loaded (/lib/systemd/system/apache2.service; enabled; vendor preset: enabled)
 Active: active (running) (Result: exit-code) since Mon 2019-03-25 16:50:26 CET; 1 day 22h ago
 Process: 31773 ExecReload=/usr/sbin/apachectl graceful (code=exited, status=0/SUCCESS)
 Main PID: 20273 (apache2)
 Tasks: 55 (limit: 4915)
 CGroup: /system.slice/apache2.service
 ├─20273 /usr/sbin/apache2 -k start
 ├─31779 /usr/sbin/apache2 -k start
 └─31780 /usr/sbin/apache2 -k start

Mar 27 06:25:01 jupyter.cusy.io systemd[1]: Reloaded The Apache HTTP Server.

Cookie Secret

The cookie secret is used to encrypt the browser cookies that are used for
authentication.

	The cookie secret can e.g. be created with

$ openssl rand -hex 32 > /srv/jupyterhub/venv/jupyterhub_cookie_secret

	The file should not be readable by either group or anonymous:

$ chmod 600 /srv/jupyterhub/venv/jupyterhub_cookie_secret

	Finally it will be entered in the jupyterhub_config.py file:

c.JupyterHub.cookie_secret_file = 'jupyterhub_cookie_secret'

Proxy authentication token

The hub authenticates its requests to the proxy using a secret token that the
hub and proxy agree on. Usually, the proxy authentication token does not need to
be set, as the hub itself generates a random key. This means that the proxy has
to be restarted every time unless the proxy is a subprocess of the hub.

	Alternatively, the value can e.g. can be generated with

$ openssl rand -hex 32

	It can then be entered in the configuration file, for example with

c.JupyterHub.proxy_auth_token = '18a0335b7c2e7edeaf7466894a32bea8d1c3cff4b07860298dbe353ecb179fc6'

systemdspawner

The systemdspawner allows JupyterHub to create single user notebook servers with
systemd [https://en.wikipedia.org/wiki/Systemd]. You get isolation and
security without having to use Docker, rkt or similar. In addition,
systemdspawner offers other features:

	the maximum allowed memory and CPU per person can be limited via cgroups and
checked with systemd-cgtop.

	all get their own /tmp directory to increase isolation

	notebook servers can be started as specific local users on the system

	the use of sudo in notebooks can be restricted

	the paths that can be read and written to can be restricted

	logs for each notebook can be managed

Requirements

systemdspawner requires systemd ≥ v211; the security-related functions require
systemd ≥ v228. You can check which version of systemd is available on your
system with

$ systemctl --version | head -1
systemd 249 (249.11-0ubuntu3.7)

To limit memory and CPU allocations, certain kernel options must also be
available. This can be checked with check-kernel.bash [https://github.com/jupyterhub/systemdspawner/blob/main/check-kernel.bash].

If the default setting c.SystemdSpawner.dynamic_users = False is used,
the server is started with the local Unix user account. Therefore, this spawner
requires that all users, already have a local account on the machine. With
c.SystemdSpawner.dynamic_users = True, on the other hand, no local user
accounts are required; they are dynamically created by systemd as needed.

Installation and Configuration

You can install systemdspawner with

$ pipenv install jupyterhub-systemdspawner

Then you can activate it in jupyterhub_config.py with

c.JupyterHub.spawner_class = 'systemdspawner.SystemdSpawner'

There are many other configuration options open to you, for example

	c.SystemdSpawner.mem_limit = '4G'
	specifies the maximum amount of memory that can be used by each user. The
None setting disables the memory limit.

Although individual users should be able to use as much memory as possible,
it is still useful to set a memory limit of 80–90% of the total physical
memory. This prevents one user from accidentally crippling the machine
single-handedly.

	c.SystemdSpawner.cpu_limit = 4.0
	A floating point number that specifies the number of CPU cores that each
user can use.

	c.SystemdSpawner.user_workingdir = '/home/USERNAME'
	The directory where each user’s notebook server is started. This directory
is also what users see when they open their notebook servers. Normally this
is the user’s home directory.

	c.SystemdSpawner.username_template = 'jupyter-USERNAME'
	Template for the Unix user name under which each user should be created.

	c.SystemdSpawner.default_shell = '/bin/bash'
	The default shell used for the terminal in the notebook. Sets the
environment variable SHELL to this value.

	c.SystemdSpawner.extra_paths = ['/home/USERNAME/conda/bin']
	List of paths to prepend to the PATH environment variable for the
spawned notebook server. This is easier than setting the env property
because you want to add PATH and not replace it completely. This is very
useful if you want to include a virtualenv or conda installation in the
user’s PATH by default.

	c.SystemdSpawner.unit_name_template = 'jupyter-USERNAME-singleuser'
	Systemd service unit name template for each user notebook server. This
allows differentiation between multiple JupyterHubs with systemd spawners on
the same machine. Should only contain [a-zA-Z0-9_-].

	c.SystemdSpawner.unit_extra_properties = 'LimitNOFILE': '16384'
	Dict of key-value pairs used to add arbitrary properties to spawned
JupyerHub units – see also man systemd-run for details on properties.

	c.SystemdSpawner.isolate_tmp = True
	Setting this to True will create a separate, private /tmp
directory for each user. This is very useful to protect against accidental
leakage of otherwise private information.

This requires systemd version > 227. If you enable this in earlier versions,
spawning will fail.

	c.SystemdSpawner.isolate_devices = True
	If you set this option to True, a separate, private /dev
directory will be created for each user. This prevents users from accessing
hardware devices directly, which could be a potential source of security
problems. /dev/null, /dev/zero, /dev/random and the ttyp
pseudo devices are already mounted, so most users should not notice any
change if this is enabled.

	c.SystemdSpawner.disable_user_sudo = True
	Setting this option to True will prevent users from being able to use
sudo or other means to become other users. This helps limit the damage done
by compromising a user’s credentials if they also have sudo privileges on
the machine – a web-based exploit can now only damage the user’s own data.

This requires systemd version > 228. If you enable this in earlier versions,
spawning will fail.

	c.SystemdSpawner.readonly_paths = ['/']
	List of file system paths to be mounted read-only for the user’s notebook
server. This overrides any existing file system permissions. Subpaths of
paths that are mounted readonly can be marked as readwrite with
readwrite_paths. This is useful for marking / as read-only and
listing only those paths to which notebook users are allowed to write. If
the paths listed here do not exist, you will get an error message.

This requires systemd version > 228. If you enable this feature in earlier
versions, spawning will fail. Up to systemd version 231 it can also only
contain directories and no files.

	c.SystemdSpawner.readwrite_paths = ['/home/USERNAME']
	List of file system paths to be mounted read-only for the user’s notebook
server. This only makes sense if readonly_paths is used to make some
paths read-only. This does not override the file system permissions – the
user must have the appropriate permissions to write to these paths.

This requires systemd version > 228. If you enable this feature in earlier
versions, spawning will fail. Up to systemd version 231, it can also only
contain directories and not files.

See also

	systemdspawner [https://github.com/jupyterhub/systemdspawner]

Create service nbviewer

	Configuring the notebook viewer as a JupyterHub service has the advantage
that only users who have previously logged on to JupyterHub can call up the
nbviewer instance. This can be used to protect access to notebooks as a
JupyterHub service in /srv/jupyter/jupyter-tutorial/jupyterhub_config.py:

c.JupyterHub.services = [
 {
 'name': 'nbviewer',
 'url': 'http://127.0.0.1:9000',
 'cwd': '/srv/jupyterhub/nbviewer-repo',
 'command': ['/srv/jupyter/.local/share/virtualenvs/jupyter-tutorial--q5BvmfG/bin/python', '-m', 'nbviewer']
 }
]

	name
	The path name under which the notebook viewer can be reached: /services/NAME

	url
	Protocol, address and port used by nbviewer

	cwd
	The path to the nbviewer repository

	command
	Command to start nbviewer

ipyparallel

This section provides an overview of ipyparallel [https://ipyparallel.readthedocs.io/en/latest/] which supports different types
of parallelisation, including:

	Single Program, Multiple Data (SPMD)

	Multiple program, multiple data (MPMD)

	Message Passing Interface (MPI)

Installation

	Installation

$ pipenv install "ipython[all]"

	Activate notebook server extension:

$ pipenv run jupyter serverextension enable --py ipyparallel
Enabling: ipyparallel.nbextension
- Writing config: /Users/veit/.jupyter
 - Validating...
 ipyparallel.nbextension OK

	Install notebook extension:

$ pipenv run jupyter nbextension install --py ipyparallel
…
- Validating: OK

 To initialize this nbextension in the browser every time the notebook (or other app) loads:

 jupyter nbextension enable ipyparallel --py

	Activate notebook extension:

$ pipenv run jupyter nbextension enable --py ipyparallel
Enabling tree extension ipyparallel/main...
 - Validating: OK

Overview

Architecture

The IPython.parallel architecture consists of four components:

digraph IPython_parallel {
 graph [fontname = "Calibri", fontsize="16"];
 node [fontname = "Calibri", fontsize="16"];
 edge [fontname = "Calibri", fontsize="16"];
 // Nodes
 hub [
 label="Hub"
 target="_top",
 href="../parallel/ipyparallel/intro.html#ipython-hub"]
 engine [
 label="Engine"
 target="_top",
 href="../parallel/ipyparallel/intro.html#ipython-engine"]
 schedulers [
 label="Schedulers"
 target="_top",
 href="../parallel/ipyparallel/intro.html#ipython-schedulers"]
 client [
 label="Client"
 target="_top",
 href="../parallel/ipyparallel/intro.html#ipython-client"]
 // Edges
 engine -> hub
 client -> hub
 schedulers -> hub
 engine -> schedulers
 client -> schedulers
}

IPython-Engine

The IPython engine is an extension of the IPython kernel for Jupyter. The module
waits for requests from the network, executes code and returns the results.
IPython parallel extends the Jupyter messaging protocol with native Python
object serialisation and adds some additional commands. Several engines are
started for parallel and distributed computing.

IPython-Hub

The main job of the hub is to establish and monitor connections to clients and
engines.

IPython-Schedulers

All actions that can be carried out on the engine go through a scheduler. While
the engines themselves block when user code is executed, the schedulers hide
this from the user to provide a fully asynchronous interface for a number of
engines.

IPython-Client

There is a main object Client to connect to the cluster. Then there is a
corresponding View for each execution model. These Views allow users to
interact with a number of engines. The two standard views are:

	ipyparallel.DirectView [https://ipyparallel.readthedocs.io/en/latest/api/ipyparallel.html#ipyparallel.DirectView] class for explicit addressing

	ipyparallel.LoadBalancedView [https://ipyparallel.readthedocs.io/en/latest/api/ipyparallel.html#ipyparallel.LoadBalancedView] class for target-independent scheduling

Start

	Starting the IPython Hub:

$ pipenv run ipcontroller
[IPControllerApp] Hub listening on tcp://127.0.0.1:53847 for registration.
[IPControllerApp] Hub using DB backend: 'DictDB'
[IPControllerApp] hub::created hub
[IPControllerApp] writing connection info to /Users/veit/.ipython/profile_default/security/ipcontroller-client.json
[IPControllerApp] writing connection info to /Users/veit/.ipython/profile_default/security/ipcontroller-engine.json
[IPControllerApp] task::using Python leastload Task scheduler
…

	DB backend
	The database in which the IPython tasks are managed. In addition to the
in-memory database DictDB, MongoDB and SQLite are further
options.

	ipcontroller-client.json
	Configuration file for the IPython client

	ipcontroller-engine.json
	Configuration file for the IPython engine

	Task-Schedulers
	The possible routing scheme. leastload always assigns tasks to the
engine with the fewest open tasks. Alternatively, lru (Least Recently
Used), plainrandom, twobin and weighted can be selected, the
latter two also need NumPy.

This can be configured in ipcontroller_config.py, for example with
c.TaskScheduler.scheme_name = 'leastload' or with

$ pipenv run ipcontroller --scheme=pure

	Starting the IPython controller and the engines:

$ pipenv run ipcluster start
[IPClusterStart] Starting ipcluster with [daemon=False]
[IPClusterStart] Creating pid file: /Users/veit/.ipython/profile_default/pid/ipcluster.pid
[IPClusterStart] Starting Controller with LocalControllerLauncher
[IPClusterStart] Starting 4 Engines with LocalEngineSetLauncher

	Batch systems
	Besides the possibility to start ipcontroller and ipengine locally,
see Starting a cluster with SSH [https://ipyparallel.readthedocs.io/en/latest/tutorial/process.html#starting-a-cluster-with-ssh],
there are also the profiles for MPI, PBS, SGE, LSF,
HTCondor, Slurm, SSH and WindowsHPC.

This can be configured in ipcluster_config.py for example with
c.IPClusterEngines.engine_launcher_class = 'SSH' or with

$ pipenv run ipcluster start --engines=MPI

See also

MPI

	Starting the Jupyter Notebook and loading the IPython-Parallel-Extension:

$ pipenv run jupyter notebook
[I NotebookApp] Loading IPython parallel extension
[I NotebookApp] [jupyter_nbextensions_configurator] enabled 0.4.1
[I NotebookApp] Serving notebooks from local directory: /Users/veit//jupyter-tutorial
[I NotebookApp] The Jupyter Notebook is running at:
[I NotebookApp] http://localhost:8888/?token=4e9acb8993758c2e7f3bda3b1957614c6f3528ee5e3343b3

	Finally the cluster with the default profile can be started in the
browser at the URL
http://localhost:8888/tree/docs/parallel/ipyparallel#ipyclusters.

Check the installation

[1]:

import ipyparallel as ipp

c = ipp.Client()
c.ids

[1]:

[0, 1, 2, 3]

[2]:

c[:].apply_sync(lambda : "Hello, World")

[2]:

['Hello, World', 'Hello, World', 'Hello, World', 'Hello, World']

Configuration

For the configuration, a configuration file is created for the client and engine
when the IPython hub is started, usually in
~/.ipython/profile_default/security/.

	If we don’t want to use the default profile, we should first create a new
IPython profile with:

$ pipenv run ipython profile create --parallel --profile=local
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_parallel/ipython_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_parallel/ipython_kernel_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_parallel/ipcontroller_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_parallel/ipengine_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_parallel/ipcluster_config.py

	--parallel
	includes the configuration files for Parallel Computing (ipengine,
ipcontroller etc.).

	When the IPython controller and the engines are started, the files
ipcontroller-engine.json and ipcontroller-client.json are
generated in ~/.ipython/profile_default/security/.

ipcluster in mpiexec/mpirun mode

	Creating the profile:

$ pipenv run ipython profile create --parallel --profile=mpi
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_mpi/ipython_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_mpi/ipython_kernel_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_mpi/ipcontroller_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_mpi/ipengine_config.py'
[ProfileCreate] Generating default config file: '/Users/veit/.ipython/profile_mpi/ipcluster_config.py'

	Editing of ipcluster_config.py:

	so that the MPI launcher can be used:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'

	The cluster can then be started with:

$ pipenv run ipcluster start -n 4 --profile=mpi
[IPClusterStart] Starting ipcluster with [daemon=False]
[IPClusterStart] Creating pid file: /Users/veit/.ipython/profile_mpi/pid/ipcluster.pid
[IPClusterStart] Starting Controller with LocalControllerLauncher
[IPClusterStart] Starting 4 Engines with LocalEngineSetLauncher
[IPClusterStart] Engines appear to have started successfully

IPython’s Direct interface

Create a DirectView

[1]:

import ipyparallel as ipp

rc = ipp.Client()

[2]:

rc = ipp.Client(profile="default")

[3]:

rc.ids

[3]:

[0, 1, 2, 3]

Use all engines:

[4]:

dview = rc[:]

map() function

Python’s builtin map() function can be applied to a sequence of elements and is usually easy to parallelise.

Please note that the DirectView version of map() does not do automatic load balancing. You may have to use LoadBalancedView for this.

[5]:

serial_result = list(map(lambda x: x**10, range(32)))

[6]:

parallel_result = dview.map_sync(lambda x: x**10, range(32))

[7]:

serial_result == parallel_result

[7]:

True

ipyparallel magics

[1]:

import ipyparallel as ipp

rc = ipp.Client()

[2]:

with rc[:].sync_imports():
 from matplotlib.pyplot import plot
 from numpy.linalg import eigvals
 from numpy.random import rand
 from numpy.random import random

importing plot from matplotlib.pyplot on engine(s)
importing eigvals from numpy.linalg on engine(s)
importing rand from numpy.random on engine(s)
importing random from numpy.random on engine(s)

[3]:

%px a = rand(2,2)

[4]:

%px eigvals(a)

Out[0:2]: array([0.92645255, 0.48484728])

Out[3:2]: array([0.23462225, 0.7614717])

Out[1:2]: array([1.36472418, 0.17225772])

Out[2:2]: array([0.88215574, 0.01329861])

[5]:

%px print("hi")

[stdout:0] hi

[stdout:1] hi

[stdout:2] hi

[stdout:3] hi

[6]:

%px %matplotlib inline

[7]:

%px plot(rand(100))

Out[3:5]: [<matplotlib.lines.Line2D at 0x12c926f50>]

Out[2:5]: [<matplotlib.lines.Line2D at 0x1180bc3d0>]

Out[1:5]: [<matplotlib.lines.Line2D at 0x116a39b10>]

Out[0:5]: [<matplotlib.lines.Line2D at 0x1164c5e50>]

[output:1]

[image: ../../_images/hub_ipyparallel_magics_7_5.png]

[output:2]

[image: ../../_images/hub_ipyparallel_magics_7_7.png]

[output:0]

[image: ../../_images/hub_ipyparallel_magics_7_9.png]

[output:3]

[image: ../../_images/hub_ipyparallel_magics_7_11.png]

%%px cell magic

--targets, --block and --noblock

[8]:

%%px --targets ::2
print("I am even")

[stdout:0] I am even

[stdout:2] I am even

[9]:

%%px --targets 1
print("I am number 1")

[stdout:1] I am number 1

[10]:

%%px
print("still all by default")

[stdout:0] still all by default

[stdout:1] still all by default

[stdout:2] still all by default

[stdout:3] still all by default

[11]:

%%px --noblock
import time
time.sleep(1)
time.time()

[11]:

<AsyncResult(%px): pending>

[12]:

%pxresult

Out[0:8]: 1687880859.822293

Out[1:8]: 1687880859.82328

Out[2:8]: 1687880859.825772

Out[3:7]: 1687880859.823294

[13]:

%%px --block --group-outputs=engine
a = random((2,2))
ev = eigvals(a)
print(ev)
ev.max()

[stdout:0] [-0.28021424 0.98267777]

Out[0:9]: 0.9826777676672127

[stdout:1] [-0.21385117 0.65604043]

[stdout:3] [-0.01307275 1.11437227]

Out[1:9]: 0.6560404264968436

[stdout:2] [1.0290232 -0.55640908]

Out[3:8]: 1.1143722684611335

Out[2:9]: 1.0290231951538584

%pxresult

[14]:

dview = rc[:]

[15]:

dview.block = False
%px print("hi")
%pxresult

[stdout:0] hi

[stdout:1] hi

[stdout:2] hi

[stdout:3] hi

[stdout:0]
hi
[stdout:1]
hi
[stdout:2]
hi
[stdout:3]
hi

%pxconfig

[16]:

%pxconfig --block
%px print("hi")

[stdout:0] hi

[stdout:1] hi

[stdout:2] hi

[stdout:3] hi

[17]:

%pxconfig --targets ::2
%px print("hi")

[stdout:0] hi

[stdout:2] hi

[18]:

%pxconfig --noblock
%px print("hi")

[18]:

<AsyncResult(%px): pending>

[19]:

%pxresult

[stdout:0]
hi
[stdout:2]
hi

%autopx

[20]:

dview = rc[:]

[21]:

dview.block=True

[22]:

%autopx

%autopx enabled

[23]:

max_evals = []
for i in range(100):
 a = rand(10, 10)
 a = a + a.transpose()
 evals = eigvals(a)
 max_evals.append(evals[0].real)

[7]:

print(f"Average max eigenvalue is: {sum(max_evals)/len(max_evals)}")

[stdout:0] Average max eigenvalue is: 10.16283266814223

[stdout:1] Average max eigenvalue is: 10.107913323305741

[stdout:2] Average max eigenvalue is: 10.107616513254618

[stdout:3] Average max eigenvalue is: 10.040409820953181

Multiple active views

Magics of ipyparallel are assigned to certain DirectView objects. However, the active view can be changed by calling the activate() method on a view.

[25]:

even = rc[::2]
even.activate()
%px print("hi")

[25]:

<AsyncResult(%px): pending>

[26]:

even.block = True
%px print("hi")

[stdout:0] hi

[stdout:2] hi

If you activate the view, you can also specify a suffix so that it can be assigned to a whole range of magics without replacing the existing ones.

[27]:

rc.activate()

[27]:

<DirectView all>

[28]:

even.activate("_even")
%px print("hi")

[stdout:0] hi

[stdout:1] hi

[stdout:2] hi

[stdout:3] hi

[29]:

%px_even print("We aren’t odd!")

[stdout:0] We aren’t odd!

[stdout:2] We aren’t odd!

This suffix is used at the end of all magics, e.g.%autopx_even, %pxresult_even etc.

For the sake of simplicity, also Client has an activate() method that creates a DirectView with block = True, activates it, and returns the new view.

The initial magics that are registered when a client is created are the result of the call rc.activate() with standard arguments.

Engines as kernel

Engines are actually the same object as IPython kernels, with the only exception that engines connect to a controller, while regular kernels bind their sockets directly to connections to their front end.

Sometimes you will connect your front end directly to an engine for debugging or analysing the interaction more directly. You can also do this by instructing the engine to bind its kernel to your frontend as well:

[30]:

%px import ipyparallel as ipp; ipp.bind_kernel()
%px %qtconsole

Note:

Be careful with this statement, as it starts as many QtConsoles as there are engines available.

Alternatively, you can also display the connection information and determine how you can establish a connection to the engines, depending on where they live and where you are:

[31]:

%px %connect_info

[stdout:0] {
 "shell_port": 63143,
 "iopub_port": 63148,
 "stdin_port": 63154,
 "control_port": 63167,
 "hb_port": 63156,
 "ip": "127.0.0.1",
 "key": "defc3484-e06d43284f54a3939ad7eec2",
 "transport": "tcp",
 "signature_scheme": "hmac-sha256",
 "kernel_name": ""
}

Paste the above JSON into a file, and connect with:
 $> jupyter <app> --existing <file>
or, if you are local, you can connect with just:
 $> jupyter <app> --existing /srv/jupyter/.ipython/profile_default/security/kernel-11237.json
or even just:
 $> jupyter <app> --existing
if this is the most recent Jupyter kernel you have started.

[stdout:1] {
 "shell_port": 63145,
 "iopub_port": 63149,
 "stdin_port": 63153,
 "control_port": 63165,
 "hb_port": 63155,
 "ip": "127.0.0.1",
 "key": "defc3484-e06d43284f54a3939ad7eec2",
 "transport": "tcp",
 "signature_scheme": "hmac-sha256",
 "kernel_name": ""
}

Paste the above JSON into a file, and connect with:
 $> jupyter <app> --existing <file>
or, if you are local, you can connect with just:
 $> jupyter <app> --existing /srv/jupyter/.ipython/profile_default/security/kernel-11238.json
or even just:
 $> jupyter <app> --existing
if this is the most recent Jupyter kernel you have started.

[stdout:2] {
 "shell_port": 63147,
 "iopub_port": 63152,
 "stdin_port": 63160,
 "control_port": 63166,
 "hb_port": 63161,
 "ip": "127.0.0.1",
 "key": "defc3484-e06d43284f54a3939ad7eec2",
 "transport": "tcp",
 "signature_scheme": "hmac-sha256",
 "kernel_name": ""
}

Paste the above JSON into a file, and connect with:
 $> jupyter <app> --existing <file>
or, if you are local, you can connect with just:
 $> jupyter <app> --existing /srv/jupyter/.ipython/profile_default/security/kernel-11239.json
or even just:
 $> jupyter <app> --existing
if this is the most recent Jupyter kernel you have started.

[stdout:3] {
 "shell_port": 63150,
 "iopub_port": 63159,
 "stdin_port": 63162,
 "control_port": 63169,
 "hb_port": 63163,
 "ip": "127.0.0.1",
 "key": "defc3484-e06d43284f54a3939ad7eec2",
 "transport": "tcp",
 "signature_scheme": "hmac-sha256",
 "kernel_name": ""
}

Paste the above JSON into a file, and connect with:
 $> jupyter <app> --existing <file>
or, if you are local, you can connect with just:
 $> jupyter <app> --existing /srv/jupyter/.ipython/profile_default/security/kernel-11240.json
or even just:
 $> jupyter <app> --existing
if this is the most recent Jupyter kernel you have started.

Task interface

The task interface to the cluster presents the engines as a fault-tolerant, dynamic load balancing of Workers. In contrast to the direct interface, the task interface does not have direct access to individual engines. As the IPython scheduler assigns the workers, the interface becomes simpler and more powerful at the same time.

The best part, however, is that both interfaces can be used at the same time to leverage their respective strengths. If calculations do not depend on previous results, the task interface is ideal:

Create an LoadBalancedView instance

[1]:

import ipyparallel as ipp

[2]:

rc = ipp.Client()

[3]:

rc = ipp.Client(url_file='/Users/veit/.ipython/profile_mpi/security/ipcontroller-client.json')

[4]:

rc = ipp.Client(profile='mpi')

[5]:

lview = rc.load_balanced_view()

load_balanced_view is the default view.

See also:

	Views [https://ipyparallel.readthedocs.io/en/latest/reference/details.html#views]

Fast and easy parallelism

map()-LoadBalancedView

[6]:

lview.block = True
serial_result = map(lambda x:x**10, range(32))
parallel_result = lview.map(lambda x:x**10, range(32))
serial_result==parallel_result

[6]:

True

@lview.parallel() decorator

[7]:

@lview.parallel()
def f(x):
 return 10.0*x**4

f.map(range(32))

[7]:

[0.0,10.0,160.0,…]

Dependencies

Note:

Please note that the pure ZeroMQ scheduler does not support any dependencies.

Function dependencies

UnmetDependency

@ipp.require decorator

@ipp.depend decorator

dependent object

Dependency

[]:

client.block=False

ar = lview.apply(f, args, kwargs)
ar2 = lview.apply(f2)

with lview.temp_flags(after=[ar,ar2]):
 ar3 = lview.apply(f3)

with lview.temp_flags(follow=[ar], timeout=2.5)
 ar4 = lview.apply(f3)

See also: Some parallel workloads can be described as Directed acyclic graph [https://en.wikipedia.org/wiki/Directed_acyclic_graph] (DAG). In DAG Dependencies [https://ipyparallel.readthedocs.io/en/latest/reference/dag_dependencies.html] we describe using an example how NetworkX [https://pyviz-tutorial.readthedocs.io/de/latest/matplotlib/networkx.html] is used to represent the task dependencies as DAG.

ImpossibleDependency

retries and resubmit

Schedulers

[]:

ipcontroller --scheme=lru

	Scheme

	Description

	lru

	Least Recently Used: Always assigns the workers to the last used engine. Similar to round robin, however, it does not take into account the runtime of each individual task.

	plainrandom

	Plain Random: Randomly selects the engine to be run.

	twobin

	Two-Bin Random: Requires numpy. Randomly select two engines and use lru. This is often better than the purely random distribution, but requires more computational effort.

	leastload

	Least Load: Standard scheme that the engine always assigns tasks with the fewest outstanding tasks.

	weighted

	Weighted Two-Bin Random: Weighted Two-Bin Random scheme.

AsyncResult object

apply() returns in the noblock mode an AsyncResult object. This allows inquiries with the get() method at a later point in time. In addition, metadata occurring during execution is also collected in this object.

The AsyncResult [https://ipyparallel.readthedocs.io/en/latest/reference/details.html#asyncresults] object provides a number of useful functions for parallelisation that can be accessed through Python’s multiprocessing.pool.AsyncResult [https://docs.python.org/3/library/multiprocessing.html#multiprocessing.pool.AsyncResult]:

get_dict

AsyncResult.get_dict()

[1]:

import os

import ipyparallel as ipp

rc = ipp.Client()
ar = rc[:].apply_async(os.getpid)
pids = ar.get_dict()
rc[:]["pid_map"] = pids

Metadata

Client.metadata

Timing

Iterable map results

[2]:

from __future__ import print_function

import time

import ipyparallel as ipp

create client & view
rc = ipp.Client()
dv = rc[:]
v = rc.load_balanced_view()

scatter 'id', so id=0,1,2 on engines 0,1,2
dv.scatter("id", rc.ids, flatten=True)
print("Engine IDs: ", dv["id"])

create a Reference to `id`. This will be a different value on each engine
ref = ipp.Reference("id")
print("sleeping for `id` seconds on each engine")
tic = time.time()
ar = dv.apply(time.sleep, ref)
for i, r in enumerate(ar):
 print("%i: %.3f" % (i, time.time() - tic))

def sleep_here(t):
 import time

 time.sleep(t)
 return id, t

one call per task
print("running with one call per task")
amr = v.map(sleep_here, [0.01 * t for t in range(100)])
tic = time.time()
for i, r in enumerate(amr):
 print("task %i on engine %i: %.3f" % (i, r[0], time.time() - tic))

print("running with four calls per task")
with chunksize, we can have four calls per task
amr = v.map(sleep_here, [0.01 * t for t in range(100)], chunksize=4)
tic = time.time()
for i, r in enumerate(amr):
 print("task %i on engine %i: %.3f" % (i, r[0], time.time() - tic))

print("running with two calls per task, with unordered results")
We can even iterate through faster results first, with ordered=False
amr = v.map(
 sleep_here,
 [0.01 * t for t in range(100, 0, -1)],
 ordered=False,
 chunksize=2,
)
tic = time.time()
for i, r in enumerate(amr):
 print("slept %.2fs on engine %i: %.3f" % (r[1], r[0], time.time() - tic))

Engine IDs: [0, 1, 2, 3]
sleeping for `id` seconds on each engine
0: 0.005
1: 1.012
2: 2.011
3: 3.013
running with one call per task
task 0 on engine 0: 0.007
task 1 on engine 3: 0.016
task 2 on engine 2: 0.029
task 3 on engine 1: 0.042
task 4 on engine 0: 0.053
task 5 on engine 3: 0.073
task 6 on engine 2: 0.092
task 7 on engine 1: 0.118
task 8 on engine 0: 0.139
…

[3]:

from functools import reduce
from math import sqrt
import numpy as np

X = np.linspace(0,100)
add = lambda a,b: a+b
sq = lambda x: x*x
sqrt(reduce(add, map(sq, X)) / len(X))

[3]:

58.028845747399714

	map(sq, X) computes the square of each item in the list.

	reduce(add, sqX) / len(X) calculates the mean by adding the list of AsyncMapResult and dividing by the number.

	Square root of the resulting number.

See also:

If you want to expand the results of AsyncResult or AsyncMapResult you can do so with the msg_ids attribute. You can find an example for this at ipyparallel/docs/source/examples/customresults.py [https://github.com/ipython/ipyparallel/blob/main/docs/source/examples/customresults.py].

MPI

Often, a parallel algorithm requires moving data between the engines. One way is to push and pull over the DirectView. However, this is slow because all of the data has to get through the controller to the client and then back to the final destination.

A much better option is to use the Message Passing Interface (MPI) [https://de.wikipedia.org/wiki/Message_Passing_Interface]. IPython’s parallel computing architecture was designed from the ground up to integrate with MPI. This notebook gives a brief introduction to using MPI with IPython.

Requirements

	A standard MPI implementation like OpenMPI [https://www.open-mpi.org/] or MPICH [https://www.mpich.org/].

For Debian/Ubuntu these can be installed with

$ sudo apt install openmpi-bin

or

$ sudo apt install mpich

Alternatively, OpenMPI or MPICH can also be installed with Spack [https://www.python4data.science/en/latest/productive/envs/spack/use.html]: the packages are openmpi or mpich.

	mpi4py [https://mpi4py.readthedocs.io/en/stable/]

Starting the engines with activated MPI

Automatic start with mpiexec and ipcluster

This can be done with, for example

$ pipenv run ipcluster start -n 4 --profile=mpi

For this, however, a corresponding profile must first be created; see configuration.

Automatic start with PBS and ipcluster

The ipcluster command also offers integration in PBS [https://www.openpbs.org/]. You can find more information about this in Starting IPython Parallel on a traditional cluster [https://ipyparallel.readthedocs.io/en/latest/tutorial/process.html#starting-ipython-parallel-on-a-traditional-cluster].

Example

The following notebook cell calls psum.py with the following content:

from mpi4py import MPI
import numpy as np

def psum(a):
 locsum = np.sum(a)
 rcvBuf = np.array(0.0,'d')
 MPI.COMM_WORLD.Allreduce([locsum, MPI.DOUBLE],
 [rcvBuf, MPI.DOUBLE],
 op=MPI.SUM)
 return rcvBuf

[1]:

import ipyparallel as ipp

c = ipp.Client(profile='mpi')
view = c[:]
view.activate()
view.run('psum.py')
view.scatter('a',np.arange(16,dtype='float'))
view['a']

[1]:

[array([0., 1., 2., 3.]),
 array([4., 5., 6., 7.]),
 array([8., 9., 10., 11.]),
 array([12., 13., 14., 15.])]

[2]:

%px totalsum = psum(a)

[2]:

Parallel execution on engines: [0,1,2,3]

[3]:

view['totalsum']

[3]:

[120.0, 120.0, 120.0, 120.0]

Binder

Binder [https://jupyter.org/binder] provides an easy way to share computer
environments with everyone. Binder is used for

	Teaching and training
	Binder can be used to share links to interactive data analysis environments.
This is great for workshops, tutorials and courses and allows you to get
students up to speed with the code much more quickly.

	Technical documentation
	Binder tools can be used to make documentation and demonstrations of tools
interactive.

	Open educational resources
	Binder can provide publicly available interactive educational materials,
enabling richer experiences.

	Reproducible scientific analysis
	Binder allows you to share an interactive environment along with your code
and analysis. You can share a link where others can reproduce and interact
with your work. For example, the Neurolibre [https://neurolibre.org]
project uses Binder to reproduce neuroscience analyses.

Binder provides a full open-source infrastructure stack. The main tools are

	BinderHub
	provides the Binder service in the cloud.

See also

	Repository [https://github.com/jupyterhub/binderhub]

	Docs [https://binderhub.readthedocs.io/en/latest/]

	Examples [https://github.com/binder-examples]

	repo2docker
	creates reproducible Docker images from a Git repository.

See also

	Repository [https://github.com/jupyterhub/repo2docker]

	Docs [https://repo2docker.readthedocs.io/en/latest/]

	mybinder.org [https://mybinder.org/]
	public BinderHub deployment.

nbconvert

	nbconvert [https://nbconvert.readthedocs.io/en/latest/]
	converts notebooks to other formats

Installation

$ pipenv install nbconvert

Important

To be able to use all functions of nbconvert, Pandoc and TeX
(especially XeLaTeX) are required. These must be installed separately.

Install Pandoc

nbconvert uses Pandoc [https://pandoc.org/] to convert Markdown to
formats other than HTML.

Debian/Ubuntu
$ sudo apt install pandoc

macOS
$ brew install pandoc

 nbviewer

nbviewer

	nbviewer [https://github.com/jupyter/nbviewer]
	nbconvert as web service: Renders Jupyter notebooks as static web
pages.

Installation

	The Notebook Viewer requires several binary packages that have to be
installed on our system, for

Debian/Ubuntu
$ sudo apt install libmemcached-dev libcurl4-openssl-dev pandoc libevent-dev

macOS
$ brew install libmemcached openssl pandoc libevent

 Kernels

Kernels

The Jupyter team manages the IPython-Kernel [https://github.com/ipython/ipykernel]. In addition to Python, many other
languages can be used in notebooks. The following Jupyter kernels are widely
used:

	R

	IRKernel: Docs [https://irkernel.github.io/] | GitHub [https://github.com/IRkernel/IRkernel]

	IRdisplay: GitHub [https://github.com/IRkernel/IRdisplay]

	Repr: GitHub [https://github.com/IRkernel/repr]

	Julia

	IJulia: GitHub [https://github.com/JuliaLang/IJulia.jl]

	Interact.jl: GitHub [https://github.com/JuliaGizmos/Interact.jl]

A list of available kernels can be found in Jupyter kernels [https://github.com/jupyter/jupyter/wiki/Jupyter-kernels].

See also

	Using Wolfram Language in Jupyter: A free alternative to Mathematica [https://nicoguaro.github.io/posts/wolfram_jupyter/]

 Install, view and start the kernel

Install, view and start the kernel

Install a kernel

Kernels are searched for in the following directories, for example:

	/srv/jupyter/.local/share/jupyter/kernels

	/usr/local/share/jupyter/kernels

	/usr/share/jupyter/kernels

	/srv/jupyter/.ipython/kernels

To make your new environment available as a Jupyter kernel in one of the
directories, you should install ipykernel:

$ pipenv install ipykernel

You can then register your kernel, for example with

$ pipenv run python -m ipykernel install --prefix=/srv/jupyter/.ipython/kernels --name python311 --display-name 'Python 3.11 Kernel'

	--prefix=/PATH/TO/KERNEL
	specifies the path where the Jupyter kernel is to be installed.

	--user
	installs the kernel for the current user and not system-wide

	name NAME
	gives a name for the kernelspec. This is required in order to be able to
use several IPython kernels at the same time.

ipykernel install creates a kernelspec file in JSON format for the
current Python environment, for example:

{
 "display_name": "My Kernel",
 "language": "python"
 "argv": [
 "/srv/jupyter/.ipython/kernels/python311_kernel-7y9G693U/bin/python",
 "-m",
 "ipykernel_launcher",
 "-f",
 "{connection_file}"
],
}

	display_name
	The name of the kernel as it should be displayed in the browser. In contrast
to the kernel name used in the API, it can contain any Unicode characters.

	language
	The name of the language of the kernel. If no suitable kernelspec key is
found when loading notebooks, a kernel with a suitable language is used. In
this way, a notebook written for a Python or Julia kernel can be linked to
the user’s Python or Julia kernel, even if it does not have the same name as
the author’s.

	argv
	A list of command line arguments used to start the kernel.
{connection_file} refers to a file that contains the IP address, ports,
and authentication key required for the connection. Usually this JSON file
is saved in a safe place of the current profile:

connection_file refers to a file containing the IP address, ports
and authentication key needed for the connection. Typically, this JSON file
is stored in a secure location of the current profile:

{
 "shell_port": 61656,
 "iopub_port": 61657,
 "stdin_port": 61658,
 "control_port": 61659,
 "hb_port": 61660,
 "ip": "127.0.0.1",
 "key": "a0436f6c-1916-498b-8eb9-e81ab9368e84"
 "transport": "tcp",
 "signature_scheme": "hmac-sha256",
 "kernel_name": ""
}

	interrupt_mode
	can be either signal or message and specifies how a client should
interrupt the execution of a cell on this kernel.

	signal
	sends an interrupt, e.g. SIGINT on POSIX systems

	message
	sends an interrupt_request, see also Kernel Interrupt [https://jupyter-client.readthedocs.io/en/latest/messaging.html#kernel-interrupt].

	env
	dict with environment variables to be set for the kernel. These are
added to the current environment variables before the kernel starts.

	metadata
	dict with additional attributes for this kernel. Used by clients to
support the kernel selection. Metadata added here should have a namespace
for the tool to read and write that metadata.

You can edit this kernelspec file at a later time.

Show available kernels

$ pipenv run jupyter kernelspec list
Available kernels:
 mykernel /Users/veit/Library/Jupyter/kernels/mykernel
 python2 /Users/veit/Library/Jupyter/kernels/python2
 python3 /Users/veit/.local/share/virtualenvs/jupyter-tutorial--q5BvmfG/bin/../share/jupyter/kernels/python3

Start kernel

$ pipenv run jupyter console --kernel mykernel
Jupyter console 6.0.0
Python 2.7.15 (default, Oct 22 2018, 19:33:46)
...

In [1]:

With ctrl-d you can exit the kernel again.

Delete kernel

$ pipenv run jupyter kernelspec uninstall mykernel

Uninstall the Standard kernel

If not already done, a configuration file can be created, for example with

$ pipenv run jupyter lab --generate-config

Then you can add the following line to this configuration file:

c.KernelSpecManager.ensure_native_kernel = False

 What’s new in Python 3.8?

What’s new in Python 3.8?

In Python 3.8, the syntax is simplified and support for C libraries is also improved. Below is a brief overview of some of the new features. You can get a complete overview in What’s New In Python 3.8 [https://docs.python.org/3/whatsnew/3.8.html].

Installation

Check

[1]:

!python3 -V

Python 3.8.0

or

[]:

import sys
assert sys.version_info[:2] >= (3, 8)

Assignment Expressions: Walrus operator :=

So far, e.g. env_base can be determined by pip as follows:

[]:

import os

[]:

def _getuserbase():
 env_base = os.environ.get("PYTHONUSERBASE", None)
 if env_base:
 return env_base

This can now be simplified with:

[]:

def _getuserbase():
 if env_base := os.environ.get("PYTHONUSERBASE", None):
 return env_base

Multiple nested if, such as in cpython/Lib/copy.py [https://github.com/python/cpython/blob/main/Lib/copy.py], can also be avoided. This

[]:

from copyreg import dispatch_table

[]:

def copy(x):
 cls = type(x)
 reductor = dispatch_table.get(cls)
 if reductor:
 rv = reductor(x)
 else:
 reductor = getattr(x, "__reduce_ex__", None)
 if reductor:
 rv = reductor(4)
 else:
 reductor = getattr(x, "__reduce__", None)
 if reductor:
 rv = reductor()
 else:
 raise Error(
 "un(deep)copyable object of type %s" % cls)

becomes that:

[]:

def copy(x):
 cls = type(x)
 reductor = dispatch_table.get(cls)
 if reductor := dispatch_table.get(cls):
 rv = reductor(x)
 elif reductor := getattr(x, "__reduce_ex__", None):
 rv = reductor(4)
 elif reductor := getattr(x, "__reduce__", None):
 rv = reductor()
 else:
 raise Error("un(deep)copyable object of type %s" % cls)

Positional-only parameters

In Python 3.8 a function parameter can be specified position-related with /. Several Python functions implemented in C do not allow keyword arguments. This behavior can now be emulated in Python itself, e.g. for the pow() [https://docs.python.org/3/library/functions.html#pow] function:

[]:

def pow(x, y, z=None, /):
 "Emulate the built in pow() function"
 r = x ** y
 return r if z is None else r%z

f-strings support = for self-documenting expressions and debugging

[]:

user = 'veit'
member_since = date(2012, 1, 30)
f'{user=} {member_since=}'

Debug and release build use the same ABI

So far, a consistent application binary interface (ABI) should be guaranteed by Spack [https://www.python4data.science/en/latest/productive/envs/spack/index.html]. However, this did not include using Python in the debug build. Python 3.8 now also supports ABI compatibility for debug builds. The Py_TRACE_REFS macro can now be set with the ./configure --with-trace-refs option.

New C API

PEP 587 [https://peps.python.org/pep-0587/] adds a new C API for configuring the Python initialisation, which offers more precise control of the entire configuration and better error reports.

Vectorcall – a fast protocol for CPython

The protocol is not yet fully implemented; this will probably come with Python 3.9. However, you can already get a full description in PEP 590 [https://peps.python.org/pep-0590].

Update – or not?

The following is a brief overview of the problems you may encounter when switching to Python 3.8:

Missing packages

	opencv-python [https://pypi.org/project/opencv-python/#files]

Bugs

	Python 3.7.1 was released 4 months after the first major release with a long list of bug fixes [https://docs.python.org/3.7/whatsnew/changelog.html#python-3-7-1-final] . Something similar is to be expected with Python 3.8.

Syntax

	Very few code analysis tools and autoformatters can already handle the syntax changes of Python 3.8

Why update anyway?

Since the upgrade will take some time, it can be tempting to postpone the move indefinitely. Why should you concern yourself with incompatibilities in new versions when your current version works reliably?

The problem is that your Python is not supported indefinitely, nor will the libraries you use will support all older Python versions indefinitely. And the longer you delay an update, the bigger and riskier it will be. Therefore, the update to the new major version of Python is usually recommended a few months after the first release.

Porting

See also:

	Porting to Python 3.8 [https://docs.python.org/3.8/whatsnew/3.8.html#porting-to-python-3-8]

 What’s new in Python 3.9?

What’s new in Python 3.9?

With Python 3.9, a new release cycle is used for the first time: in the future, new releases will appear annually (see also PEP 602 [https://peps.python.org/pep-0602/]). The developers hope that they will get faster feedback on new features.

With the first published release candidate, Python should also have a stable binary interface (application binary interface, ABI): there should no longer be any ABI changes in the 3.9 series, which means that extension modules no longer have to be recompiled for each version.

You can find more information in What’s New In Python 3.9 [https://docs.python.org/3.9/whatsnew/3.9.html].

In the following, I’ll give you a brief overview of some of the new features.

Installation

Check

[1]:

!python3 -V

Python 3.9.0rc1

or

[2]:

import sys
assert sys.version_info[:2] >= (3, 9)

PEP 584 [https://peps.python.org/pep-0584]: Dictionary Merge and Update Operators

Operators for the built-in dict [https://docs.python.org/3.9/library/stdtypes.html#dict] class are now similar to those for concatenating lists: Merge (|) and Update (|=). This eliminates various disadvantages of the previous methods dict.update, {**d1, **d2} and collections.ChainMap.

Example ipykernel/ipykernel/kernelapp.py [https://github.com/ipython/ipykernel/blob/main/ipykernel/kernelapp.py]

[]:

kernel_aliases = dict(base_aliases)
kernel_aliases.update({
 'ip' : 'IPKernelApp.ip',
 'hb' : 'IPKernelApp.hb_port',
 'shell' : 'IPKernelApp.shell_port',
 'iopub' : 'IPKernelApp.iopub_port',
 'stdin' : 'IPKernelApp.stdin_port',
 'control' : 'IPKernelApp.control_port',
 'f' : 'IPKernelApp.connection_file',
 'transport': 'IPKernelApp.transport',
})

kernel_flags = dict(base_flags)
kernel_flags.update({
 'no-stdout' : (
 {'IPKernelApp' : {'no_stdout' : True}},
 "redirect stdout to the null device"),
 'no-stderr' : (
 {'IPKernelApp' : {'no_stderr' : True}},
 "redirect stderr to the null device"),
 'pylab' : (
 {'IPKernelApp' : {'pylab' : 'auto'}},
 """Pre-load matplotlib and numpy for interactive use with
 the default matplotlib backend."""),
 'trio-loop' : (
 {'InteractiveShell' : {'trio_loop' : False}},
 'Enable Trio as main event loop.'
),
})

can be simplified with:

[]:

kernel_aliases = base_aliases | {
 'ip': 'KernelApp.ip',
 'hb': 'KernelApp.hb_port',
 'shell': 'KernelApp.shell_port',
 'iopub': 'KernelApp.iopub_port',
 'stdin': 'KernelApp.stdin_port',
 'parent': 'KernelApp.parent',
}}
if sys.platform.startswith ('win'):
 kernel_aliases ['interrupt'] = 'KernelApp.interrupt'

kernel_flags = base_flags | {
 'no-stdout': (
 {'KernelApp': {'no_stdout': True}},
 "stdout auf das Nullgerät umleiten"),
 'no-stderr': (
 {'KernelApp': {'no_stderr': True}},
 "stderr auf das Nullgerät umleiten"),
}}

Example matplotlib/legend.py [https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/legend.py]

[]:

hm = default_handler_map.copy()
hm.update(self._custom_handler_map)
return hm

can be simplified with:

[]:

return default_handler_map | self._handler_map

PEP 616 [https://peps.python.org/pep-0616]: removeprefix() and removesuffix() for string methods

With str.removeprefix(prefix) [https://docs.python.org/3.9/library/stdtypes.html#str.removeprefix] and str.removesuffix(suffix) [https://docs.python.org/3.9/library/stdtypes.html#str.removesuffix] you can easily remove prefixes and suffixes. Similar methods have also been added for bytes, bytearray objects, and collections.UserString. All in all, this should lead to less fragile, better performing and more readable code.

Example find_recursionlimit.py [https://github.com/python/cpython/blob/3.9/Tools/scripts/find_recursionlimit.py]

[]:

if test_func_name.startswith("test_"):
 print(test_func_name[5:])
else:http://localhost:8888/notebooks/docs/workspace/jupyter/kernels/python39.ipynb#Beispiel-find_recursionlimit.py
 print(test_func_name)

can be simplified with:

[]:

print (test_func_name.removeprefix ("test_"))

Example deccheck.py [https://github.com/python/cpython/blob/main/Modules/_decimal/tests/deccheck.py]

[]:

if funcname.startswith("context."):
 self.funcname = funcname.replace("context.", "")
 self.contextfunc = True
else:
 self.funcname = funcname

can be simplified with:

[]:

self.contextfunc = funcname.startswith ("context.")
self.funcname = funcname.removeprefix ("context.")

PEP 585 [https://peps.python.org/pep-0585]: Additional generic types

In Type Annotations, for example list or dict can be used directly as generic types – they no longer have to be imported separately from typing. Importing typing is thus deprecated.

Example

[]:

def greet_all(names: list[str]) -> None:
 for name in names:
 print("Hello", name)

PEP 617 [https://peps.python.org/pep-0617]: New PEG parser

Python 3.9 now uses a PEG [https://en.wikipedia.org/wiki/Parsing_expression_grammar] (Parsing Expression Grammar) parser instead of the previous LL [https://en.wikipedia.org/wiki/LL_parser] parser. This has i.a. the following advantages:

	the parsing of abstract syntax trees (AST) is simplified considerably

	Left recursion [https://en.wikipedia.org/wiki/Left_recursion] becomes possible

	The creation of concrete syntax trees (CST) [https://en.wikipedia.org/wiki/Parse_tree] is possible

The new parser is therefore more flexible and should be used primarily when designing new language functions. The ast [https://docs.python.org/3.9/library/ast.html#module-ast] module is already using the new parser without the output having changed.

In Python 3.10, the old parser and all functions that depend on it – mainly the obsolete parser [https://docs.python.org/3.9/library/parser.html#module-parser] module - are deleted. Only in Python 3.9 you can return to the LL parser on the command line with -X oldparser or with the environment variable PYTHONOLDPARSER=1.

PEP 615 [https://peps.python.org/pep-0615]: Support for the IANA Time Zone Database in the Standard Library

The new zoneinfo [https://docs.python.org/3.9/library/zoneinfo.html#module-zoneinfo] brings support for the IANA time zone database to the standard library.

[5]:

from zoneinfo import ZoneInfo
from datetime import datetime, timedelta

Pacific Daylight Time:

[6]:

dt = datetime(2020, 10, 31, 12, tzinfo=ZoneInfo("America/Los_Angeles"))
print(dt)

2020-10-31 12:00:00-07:00

[7]:

dt.tzname()

[7]:

'PDT'

Pacific Standard Time:

[8]:

dt += timedelta(days=7)
print(dt)

2020-11-07 12:00:00-08:00

[9]:

print(dt.tzname())

PST

 What’s New In Python 3.10

What’s New In Python 3.10

See also:

	What’s New In Python 3.10 [https://docs.python.org/3.10/whatsnew/3.10.html]

[1]:

import sys
assert sys.version_info[:2] >= (3, 10)

Better error messages

Syntax Errors

	When parsing code that contains unclosed parentheses or brackets the interpreter now includes the location of the unclosed bracket of parentheses instead of displaying SyntaxError: unexpected EOF.

	SyntaxError exceptions raised by the interpreter will now highlight the full error range of the expression that constitutes the syntax error itself, instead of just where the problem is detected.

	Specialised messages for SyntaxError exceptions have been added e.g. for

	missing : before blocks

	unparenthesised tuples in comprehensions targets

	missing commas in collection literals and between expressions

	missing : and values in dictionary literals

	usage of = instead of == in comparisons

	usage of * in f-strings

Indentation Errors

	Many IndentationError exceptions now have more context.

Attribute Errors

	AttributeError will offer suggestions of similar attribute names in the object that the exception was raised from.

Name Errors

	NameError will offer suggestions of similar variable names in the function that the exception was raised from.

Structural Pattern Matching

Many functional languages have a match expression, for example Scala [https://www.scala-lang.org/files/archive/spec/2.11/08-pattern-matching.html], Rust [https://doc.rust-lang.org/reference/expressions/match-expr.html], F# [https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching].

A match statement takes an expression and compares it to successive patterns given as one or more case blocks. This is superficially similar to a switch statement in C, Java